Bayesian hypothesis testing for the distribution of insurance claim counts using the Gibbs sampler

نویسندگان

  • Athanassios Katsis
  • Ioannis Ntzoufras
چکیده

We construct and present a Markov Chain Monte Carlo (MCMC) algorithm for the estimation of posterior odds and probabilities of alternative models used to evaluate competing hypotheses regarding three common discrete distributions involved in the modeling of the outstanding claim counts in actuarial science. The proposed methodology involves advanced statistical techniques of Bayesian modeling which make use of the Gibbs sampling variable selection algorithm. One of the main advantages of this approach over the popular reversible jump algorithm [12] is its straightforward implementation using the MCMC language tool of WINBUGS software [17]. The methodology is applied to a real data set. Directions regarding the implementation in WINBUGS are provided at the Appendix. It is worth noting that although the context of the problem is actuarial, the methodology can be applied to any field of science where the aim is the comparison or selection of discrete distributions of counts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Fuzzy Hypothesis Testing with Imprecise Prior Distribution

This paper considers the testing of fuzzy hypotheses on the basis of a Bayesian approach. For this, using a notion of prior distribution with interval or fuzzy-valued parameters, we extend a concept of posterior probability of a fuzzy hypothesis. Some of its properties are also put into investigation. The feasibility and effectiveness of the proposed methods are also cla...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Bayesian Estimation of a Meta-analysis model using Gibbs sampler

A hierarchical Bayesian model is investigated. This model can accommodate study heterogeneity in metaanalyses. The joint posterior distribution is derived by multiplying the likelihood and priors on this model. The conditional posterior distribution of all parameters is obtained for Gibbs sampler algorithm. A simulation study is then performed to demonstrate the validity of the Gibbs sampler in...

متن کامل

Efficient Gibbs Sampler for Bayesian Analysis of a Sample Selection Model

We consider Bayesian estimation of a sample selection model and propose a highly efficient Gibbs sampler using the additional scale transformation step to speed up the convergence to the posterior distribution. Numerical examples are given to show the efficiency of our proposed sampler.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Meth. in Science and Engineering

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005